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Abstract: Relational interlinked dependencies between concepts constitute the structure of abstract
knowledge and are crucial in learning conceptual knowledge and the meaning of concepts. To explore
pre-service teachers’ declarative knowledge of physics concepts, we have analyzed concept networks,
which agglomerate 12 pre-service teacher students’ representations of the key elements in electricity
and magnetism. We show that by using network-based methods, the interlinked connections
of nodes, locally and globally, can be analyzed to reveal how different elements of the network
are supported through their connections to other nodes in the network. Nodes with high global
connectivity initialize contiguous concept patchworks within the network and are thus most often
found to be abstract, general, and advanced concepts. Locally cohesive concepts, on the other
hand, are nearly always auxiliary supporting concepts, related to specific textbook-type experiments
and model-type conceptional elements. Comparisons of group-level knowledge and individual
pre-service teacher students’ knowledge in the form of networks shows that while in group-level the
aggregated knowledge is expert-like, at the individual level pre-service teacher students possess only
a fraction of that knowledge.

Keywords: concept networks; relational knowledge; pre-service teacher education; network methods;
connectivity; cohesion

1. Introduction

Science education is supposed to stay close to conceptual knowledge as it is conceived by
experts in science and teaching science. A recurrent theme in science education is the discussion
of how the structure of novices’ knowledge differs from experts’ knowledge and how to facilitate the
transformation of novices’ knowledge to a more expert-like knowledge. It has been repeatedly noted
that the effectiveness of experts’ knowledge is derived from its organized structure, which allows
easy, fast and accurate retrieval of knowledge [1,2]. The interest towards the structure of students’
knowledge is well documented in many research reports, and thus its importance hardly needs
reiteration. Consequently, in science education, conceptual structures that are typical for advanced
scientific knowledge are also of key interest in learning abstract scientific knowledge.

Research discussing the structure of pre-service teacher students’ knowledge and how it is related
to experts’ knowledge has thus attempted to find structural characteristics of experts’ and novices’
knowledge for the basis of such comparisons. One extensive branch of such research has focused on
finding structure as it is revealed by semantic networks and closeness of terms in semantic networks,
where semantic networks are analyzed by graph-theoretical methods [3–5]. In word association studies,
the closeness of concepts in semantic networks, as they emerge in pairwise associations, is assumed
to be a robust method for exploring students’ structure of knowledge, or at least how students use
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words and terms [6,7]. However, in many cases the knowledge of interest cannot be assumed to be an
outcome of associations, but instead of rule based, normative, and regulative connections. In these
cases, closeness of concepts may be too limited to measure or gauge the relevant features of structure
of pre-service teacher students’ knowledge. This is a particularly plausible assumption in the case of
physics knowledge.

Interest in the structure of pre-service teacher students’ knowledge is also clearly manifested
in research focusing on the use of concept maps [8–11]. Within that research, the importance of the
structure of students’ knowledge derives from the assumption that certain well-organized structures are
typical to advanced, expert-like knowledge and some to shallower, novice-like knowledge. However,
the research on concept maps rarely relies on advanced graph-theoretical or knowledge cartography
methods, which allow consideration of the local and global structural features of the networks. Roughly,
the fully quantitative methods rely on local link counting and content related interpretative analysis of
hierarchical levels. This method, while is well motivated for link-counting based detection of local
structures, derives the global hierarchy-based structure from interpretative analysis rather than from
purely structural analysis. To remedy the limitations based on local link-counting, some researchers
have suggested that in analysing pre-service teacher students’ representations of their knowledge in
the form of concept maps, researchers should pay proper attention to the interlinked structure as a
whole, not only to local link-counting (see [2] and references therein).

Aside from the research focusing on concept maps and concept mapping, relatively few studies
in science education have addressed the question of structure directly. Some notable and important
exceptions, however, state their goals by using notions of coherence of knowledge or conceptual
coherence [12–15]. Addressing such structural features requires that students have expressed their
knowledge either in the form of relational systems, e.g., concept maps [8–11,16–18], or in a form
which yields to analysis of relational connections or clusters of connections [12–15]. Recent research
exploring the characteristics of novices’ and experts’ knowledge has, however, devoted closer attention
to better defining the structure of interest in regard students’ knowledge, explicitly and quantitatively,
as local cohesion and global connectivity concepts [19–22] or connected paths between concepts [16–18].
In these studies, structural notions are reduced to better definable notions of local cohesion and global
(contiguous) connectivity of knowledge elements, which can be given both proper operationalization
and used as the basis for network metrics [17,18,20,23].

The research that pays attention to the explicit structure of students’ knowledge has shown that
it is possible to connect relational structure to generality and abstractness of knowledge, providing
evidence that structural properties can be defined and operationalized, and that distinct types of
connectivity can be attributed to certain types of knowledge. For example, Lachner et al. [19,20] have
shown that local, tightly cohesive clusters may indicate shallow student knowledge and are more
typical to novices than to experts, while more sophisticated and deeper knowledge is characterized
by long contiguous connections, where concepts are distantly connected. Similarly, key concepts
in physics knowledge can be associated with long, contiguous paths [16–20,23]. The results, where
abstractness of knowledge can be connected to structural features, are a clear advancement, and
provide new information of how students might conceive complex knowledge structures, or at least,
what kinds of connection they find relevant for different types of concepts.

In this study we explore pre-service teacher students’ declarative, conceptual knowledge of
physics, and ask how and to what degree the notions of the structure of a conceptual system and
its connectivity are related to the meaning and content of concepts, especially on their abstractness
and generality, in the disciplinary field of physics. The purpose of the study is to show that abstract,
general concepts have very different structural positions in comparison to concepts which are more
context dependent and situational. As empirical data to test and explore pre-service teacher students’
relational conceptual knowledge, we use concept networks drawn by students. Every connection they
introduced in their networks was substantiated in a separate written report [16,17,23]. The knowledge
they represent is thus not associative but based on substantiated (often law-like or nomic) connections.
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This is an essential difference in comparison to associative semantic networks and to traditional concept
maps. The subject matter context in which we study the relational aspects of students’ knowledge
is electricity and magnetism at the level of standard undergraduate physics. The concept networks
drawn by pre-service teacher students provide information about how they see the relational structure
emerging from connection between the concepts as they arise in numerous ways, e.g., through models
and experiments. The written reports thus provide information about how the students substantiate or
justify these connections. In the analysis, we merge the structural and epistemic dimensions contained
in the empirical data and produce a concept network which contains both aspects of relational
structure—structure and content.

The focus of this study, however, is not primarily on individual pre-service teacher students’
knowledge or learning. The focus of interest is on students’ knowledge in general, and in exploring
the elements of high global contiguity and local cohesion, and if such elements are of diverse kinds,
as suggested by recent research on students’ abstractness knowledge [19,20]. To explore pre-service
teacher students’ relational knowledge as it is available from the student concept map, we utilize
recently suggested network analysis methods for cartography of students’ knowledge [2,18,20,24].
These methods are based on finding and quantifying intrinsic local and global connections between
the knowledge elements that students explicate in their concept maps [18,24].

The study is organized into three steps, each of them focusing and idealizing the problem a step
further. First, we construct a picture of knowledge which emphasizes networked, relational structure
as key characteristics of experts’ knowledge. From this perspective, we approach students’ declarative,
conceptual knowledge, which we investigate through a lexicon of terms, where connections between
the terms provide the meaning of concepts in important ways. Second, we rationalize why the
networked, relational structure of conceptual knowledge in learning is important and how the notions
of cohesion, connectedness, and contiguity are related to the relational structure of concepts. Third,
we operationalize the notions of local cohesiveness and global connectedness in the form of cohesion
and contiguity and connect these properties to the abstractness of the concepts and conceptual elements.
These operationalizations provide us with tools to define and analyze the students’ representations of
conceptual systems and their metrics. The research questions we pose about the structure of pre-service
teacher students’ knowledge are:

1. Which concepts and conceptual elements have high connectivity, and of which type?
2. How do the concepts with high connectivity of distinct types differ in their content?
3. How does individual students’ knowledge relate to group-level knowledge?

For us, the notion of connectivity has a significant role in exploring the structure of students’
knowledge expression in the form of concept networks, as the research questions show.

The results of the study, based on extended network-based analysis, confirm the assumption that
abstract, general concepts have different structural positions in comparison to more context related
concepts. In addition, the results show that at the group-level, the students’ knowledge comes close to
expert-like knowledge and is richly connected at the global level, while individual students possess
only parts of the group-level knowledge. The parts of knowledge structures in possession of students
are not always very comprehensive or extensive, but they are nearly always adequate as such and
well substantiated.

2. Relational Knowledge and its Cartography: A Network View

The view that knowledge is a system and that different knowledge elements acquire their meaning
as part of that system is supported by recent ideas which emphasize the role of relations in building
the meaning of concepts [25–28]. This view lends itself very easily to underpinning the exploration
of students’ knowledge to how they represent their declarative knowledge. The pre-service teacher
students’ representations of their declarative knowledge (i.e., knowledge in written, explicated form or
represented symbolically) provides, of course, only a window into their knowledge, but is nevertheless
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a major part of the knowledge they can use in communicating their understanding of the knowledge
system that the representations are about. For example, how they would use that knowledge in
problem solving would provide a different, complementary picture. However, both pictures are
needed and here we focus on the former, declarative knowledge.

We first briefly summarize the basic notions of relational knowledge, then rationalize the
representation of such knowledge as kinds of lexicons, and finally introduce appropriate cartographic
methods to find metrics of such networks.

2.1. Relational Knowledge

The structure of knowledge systems emerges from relational connections between concepts
which form the system. The role of relational structures and relational schemes in learning concepts
and abstract knowledge has recently been discussed within the relational theory of concepts [25–28].
In this theory, the relational structure of knowledge is in focus in a very similar way as in those
views on scientific knowledge that emphasize the systemic (and systematic) nature of scientific
knowledge [29–33]. The importance of the relational theory of concepts to science education has
recently been pointed out by Goldwater and Schalk [25], who discuss the role that relational knowledge
and relational categories play in bridging cognitive science and science education. In discussing the role
of relational concepts in learning, they claim that in learning advanced scientific knowledge, “learners
need to acquire a highly interrelated set of concepts and principles that classify phenomena, problems,
and situations by their deep (common) relational structure” [25]. According to Goldwater and Schalk,
such relational knowledge is indispensable for experts, and they claim that becoming an expert requires
“learning and understanding highly interconnected systems of relational knowledge”, which during
the learning and growth of expertise, become richer and more coherent [25]. In a comparable way, in
many of the studies by Lachner et al. [19–22] they have pointed out that experts’ knowledge builds
around abstract, coherent connections, where conceptual distances between the concepts are often
distant and complex, while novices’ knowledge often consist of closely related concepts but also
remains shallower in comparison to experts’ knowledge. These notions suggest that the indispensable
feature of the experts’ knowledge in learning and teaching contexts is abstractness, deep embedding
of the theoretical structure of knowledge, and complex connection within that knowledge system.

These notions contained in research emphasising relational knowledge and relational schemes
embody the seminal notions [1] that scientific knowledge and experts’ knowledge is organized,
constituted by relationships between the concepts and that such relations are related to abstractness
and generality of concepts. Next, we turn to take a step which brings us closer to operationalization of
structural features of interest.

2.2. Relational Knowledge as Networked Lexicon

The notions of relational knowledge invite representations in which relational connections and
interlinking patterns between concepts are explicated. If relational structures and patterns are taken to
be central to learning and understanding scientific knowledge, as these views posit, we must attempt to
find ways to represent, explicate, and recognize such structures. One possibility is to turn to conceptual
declarative knowledge and how it can be represented. Such a restriction is of course only one aspect of
the richness of conceptual knowledge, yet it is important enough to deserve attention of its own.

Conceptual declarative knowledge is often approached from the viewpoint of semantic networks,
where networked connections are of primary interest [32] because retrieval and inference are based on
traversing such networks. From the viewpoint of semantic networks, concepts are assumed to form
clusters in which connections are close. Concepts within clusters share more similarities than concepts
in different clusters. The structure revealed closeness of terms in semantic networks are appropriate
for studies where associative knowledge and word associations are in focus [6,7,32]. However, in
cases where the knowledge is rule-based, normative, and based on regulative connections, as in the
case of abstract, general concepts, longer, contingent paths which relate concepts in different clusters
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are important [16,18–20]. In any case, regardless of the distance between concepts, both view direct
attention to exploring the connectivity of knowledge elements within the knowledge system.

An obvious way to explore the conceptual connections is by focusing on terms that stand for the
concepts, and how relationships between the terms emerge as they are explicated in different contexts.
Such a network eventually forms a lexicon of terms and names, where connections between them
derive from contextualized instances of how terms are used [33]. The assumption that concept meaning
is related to the structure of lexical systems is closely related to notions that learning word meanings is
directly reflected in the relational structure of the lexical networks the learners possess [34,35]. From
the viewpoint of scientific knowledge, the focus on concept networks as lexical networks finds support
from the notion that scientific knowledge can also be seen as a lexical system, and learning scientific
knowledge is learning that lexical system [33]. Seeing relational conceptual knowledge as a networked
lexicon, although not very common in science education and research on it, receives strong dual
support from research on learning as well as from analyses of scientific knowledge. Here, by focusing
on the relational structure of pre-service teacher students’ declarative knowledge in the form of lexicon,
we attempt to bridge the gap that we think remains between recurrent descriptive and qualitative
notions of importance of structure of students’ knowledge, and how research has thus far managed to
operationalize these notions. To get the tools to bridge the gap, we next turn to methods of cartography
of knowledge.

2.3. Cartography of Networked Lexicons

The network approach to conceptual declarative knowledge provides not only a new view on
knowledge as system, but in addition, and importantly, as practical tools to develop well-defined
operationalizations for the key notions. Complex network methods, as a cartography of knowledge,
have been successfully utilized in mapping scientific knowledge as it is revealed by connections
between different disciplinary areas, citation networks, and networks of scientific collaborations [36–38].
We approach the students’ lexicon of declarative knowledge and concept networks by using metrics
to measure the connectivity of nodes in the networks, representing them by following paralleling
methods [18] as developed in the context of the cartography of knowledge. The network theory
provides several operationalizations [39–41] of such properties, and exhaustive study of all them is
beyond the scope of the present study. However, there is no straightforward method to decide a priori
which measures are optimal, and such decisions must be made a posteriori on the basis of how the
operationalization of the desired property is carried out and whether it is able to convey information
on the desired property of the network.

We assume that the key elements of students’ declarative knowledge are those elements that have
important local and global connecting roles in the concept networks. On the basis of previous studies
focusing on the structure of students’ concept networks [17,18,20], we suggest that the three most
important properties and their operationalizations are:

• Local connectivity. Local connectivity of a node is simply the strength of all its connections to
neighbouring nodes, thus providing the local epistemic support for the node. If the node has many
well-substantiated connections, the epistemic support of the node is strong. Local connectivity is
operationalized as Degree centrality, D (see Appendix A).

• Local cohesion. Local cohesion of a node is related to the number of neighbours of the node
that are also connected. Such triadically connected patterns are mutually supporting and give
rise to cyclic structures. Of these, the triadic cycle is of special interest, since it connects the
closest neighbours transitively and confers strong local coherence of the system. Local cohesion is
operationalized as the Local Clustering coefficient, C (see Appendix A).

• Global contiguity. Global contiguity is related to global connectivity and the availability of
long paths connecting two distantly separated knowledge elements in the network. Such long
contiguous paths are pathways to transmit supporting information, needed in substantiating
knowledge elements not only within the local neighbourhood but also in the network as whole.
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Global contiguity is operationalized here as Communicability Centrality, G (see Appendix A).
Communicability Centrality is directly related to knowledge elements’ role in mediating between
the other elements in the system. High global contiguity obviously also implies high global
cohesion, in the sense that distant elements are nevertheless interconnected. Therefore, we do not
need a separate measure for global cohesion.

The selection of these three properties and operationalizations is justified by their close connection
to desired structural properties, but also their practical utility in helping to discern those properties
which have been found central to the basis of a posteriori considerations. The above-defined
properties can be operationalized in many ways, but here we have opted to use the most obvious
standard centrality measures [39–41]. The operationalizations, in terms of D, C, and G, are based
on path-counting in a network [18,20,40], as explained in detail in Appendix A. The path-counting
algorithm contains one parameter β which controls how the long paths are weighted in the counting
(i.e., how substantial portions of the network are included in counting) [18,40]. When β << 1, only
local neighbours are included, while for β >> 1, all available paths in the network are included. For
most cases value β = 1 is used, which weights paths to correct the effect of expected multiplicity
(see Appendix A). Finally, it should be noted, however, that the above verbal descriptions of
the centralities are only illustrative and cannot replace the mathematical descriptions provided in
Table A1 and Appendix A. The verbal descriptions serve to give an overall idea of the nature of
operationalization but are incomplete and easily misleading. The mathematical descriptions are thus
indispensable [41].

3. Empirical Sample, Its Preparation, and Method of Analysis

As an example of the network-based cartography of pre-service teacher students’ knowledge,
we discuss here how students present their views of the relational connectedness of concepts in
electricity and magnetism, and how the network view provides a window on the features of that
knowledge system. The sample on which we base our analysis consists of 12 concept networks,
each made by one student and produced during a seven-week course that focused on the conceptual
structure of physics. During the teaching sequence, the pre-service teacher students first produced
an initial concept network, and later, after instruction and group discussions, a definitive version
of the concept network. In constructing the networks, students were instructed to follow certain
design principles, explained in detail elsewhere [16,19] and summarized in Appendix B to the extent
necessary here. Here, only the final networks are considered because the final stage of the students’
understanding of the relational structure of concepts is of interest. The 12 individual concept networks
are not separately analyzed. Instead, for analysis we formed three different agglomerated networks
based on the 12 individual networks, which represent students’ knowledge at the group level. Of these
three networks, the first is a direct agglomeration of acceptable knowledge found in the 12 individual
networks, while the two others are augmented versions of the first. The augmented networks contain
about 10% additional links, which three experts added to make the augmented network correspond to
a representation the experts found adequate and expert like.

3.1. Content Analysis

For the analysis, all nodes in the individual concept networks (and also reported in written
reports) were evaluated and all relevant nodes were retained (about 5% of nodes were filtered out
at this stage). Next, the detailed content analysis based on epistemic classification of nodes was
performed. Epistemic, content related classification of nodes contained two levels [16,19]:

1. Level of using ontologically correct properties for nodes;
2. Level of factually correct statements.

It should be noted that the ontological level is a requirement for the factual level. At the ontological
level, the explanation needs to contain correct physics concepts connected correctly to ontological
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properties of their targets (i.e., particles can have electric charge, mass, and track, whereas fields have
strength and extension). At the factual level, the explanation needs to contain correctly identified
connections between at least two concepts. Factual knowledge can be represented in the form of
physics law or principles, or it can be some experimentally perceived connection between concepts or
connection derived from a model. Each node in students’ gained scores from 0 to 2 is based on this
epistemic analysis. The content analysis was performed independently by two researchers. The overall
interrater agreement was 95%.

3.2. Construction of Collated Networks for Cartography

Here we focus on the examination of pre-service teacher students’ group-level knowledge. We use
three differently collated (agglomerated) networks based on the relationships found in 12 individual
networks and on the level of epistemic substantiation of the relationships. The collated networks
contain the same 121 nodes, but the nodes are linked differently. The three networks studied are:

• Collated, authentic network (COL-A): contains all the substantiated nodes, found from students’
concept networks, as weighted connections. The weights are related to the epistemic analysis of the
nodes and ignore partially substantiated connections. This network contains 692 different links.

• Collated, optimized network (COL-O): is otherwise similar to COL-A but all links are taken as
fully substantiated.

• Augmented network (AUG): contains all connections found in the 12 individual networks and
some additional connections, which three experts (one professor and two university lecturers)
evaluated as possible connections and for which they could provide proper substantiations.
The augmented network contains 787 links and can be taken to represent experts’ knowledge,
because three experts refined it to the extent that they deemed to provide an adequate
representation of the topic.

To prepare the collated networks and the individual concept networks made by students in a form
that yields to quantitative analysis, the information contained in the epistemic strength of the nodes is
transformed into information contained in the links between the nodes, in form of the weight w of the
link and normalized to maximum value one. The details of weighting and construction of the weighted
network are explained in Appendix A. Here it is enough to keep in mind that epistemic quality of
content is now coded in link weights. All networks discussed in what follows, the augmented (AUG),
collated (COL-O and COL-A), and individual (IND), are transformed into weighted, directed networks,
and analyzed as such.

The original 12 students’ concept networks are discussed to the extent that they can be compared
to collated networks. The reason for this is that only at the level of collated networks do interesting and
relevant features of structure of knowledge become apparent. It is important to note that the structural
features found at group-level are not artefacts produced by the collation of individual networks. Rather,
the collation removes noise, and parses incompletely expressed connections, and connections that
individual students failed to notice. In many ways, this parallels the utility and improvement of
group-level knowledge found in crowdsourcing of knowledge [42].

One example of the individual networks is shown in Figure 1, which illustrates the overall
appearance of the network and shows how it consists of three modules (communities). The modularity
is partially a consequence of the task structure. The three tasks (electricity, magnetism, and
electromagnetism) were completed separately and joined only in the final concept network.
Nodes 1-53 correspond to the module on electricity, nodes 54-93 to magnetism, and nodes 94-121
to electromagnetism.
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Figure 1. One example of an individual pre-service teacher student’s concept network. To the lower 
left are concepts related to magnetism, to the lower right concepts relating to electrostatics, and to the 
upper middle concepts related to electromagnetism.  

Table 1. Listing of the most important nodes and their contents. Numbering as in Figures. 
Abbreviations are used for: principle (p), empirical (e) and theoretical (t).  

Node Description Node Description 

2 Electric charge Q 70 Magnetic interaction M=m x B 
9 Superposition of forces (p) 71 Magnetic flux density (e) 

14 Electric flux density D (in vacuum) 72 Electric current I 
22 Electric field E as conservative field 74 Örsted’s experiment 
27 Superposition of fields (p) 76 Biot-Savart law (e) 
28 Electric field E defined as E=F/q 82 Ampere-Laplace law (integral form) 
32 Mechanical work in E-field  83 Magnetic force F=qv x B 
33 Work and conservation of energy (p) 85 B as non-conservative field 
34 Energy conservation (p) 86 Magnetic potential energy 
38 Electric potential (as grad E) 87 Magnetic field (defined through 86) 
41 Equipotential surfaces 90 Ampere’s circuital law 
44 Electric field defined through potential 91 Magnetic field H (defined through 90) 
47 Electric flux 93 Lorentz’s force F=q(E+v x B) 
51 Gauss’ law defining D 95 Electromagnetic induction (experiment) 
54 Electric field defined as source field 98 Lenz’s law 
55 Ferromagnet (bar magnet) 100 Induction law (Faraday-Henry law) 
57 Magnetic interaction (through force) 103 Electromotive force (emf) 
59 Magnetic dipole (as theoretical model) 109 Rotational electric field (e) 
62 Magnetic interaction as action-at-dist. 113 Ampere-Maxwell law 
63 Magnetic moment m (e) 116 Resonance frequency (in RCL circuit) 
66 Magnetic flux density B (t) 117 Resonance (RCL) circuit (experiment) 
69 Magnetic flux Ф 120 Electromagnetic (propagating) waves 

 

Figure 1. One example of an individual pre-service teacher student’s concept network. To the lower
left are concepts related to magnetism, to the lower right concepts relating to electrostatics, and to the
upper middle concepts related to electromagnetism.

4. Results

The relational structure of the collated concept networks is revealed by the network cartography,
in terms of local observables for connectivity D, cohesion C, and communicability G. The nodes of the
network representing concepts and conceptual elements are then ranked according to their values D
and C to find concepts with high local connectivity and cohesion, and according to G to find concepts
with high global contiguity. We refer to concepts with high G as the key concepts, because they have
an important global structural role. The statistical significance of the results summarized here has been
assessed in the standard way of network-analysis by using the configuration-model [41] as a null-model
(see Appendix A) (see also [18,24]). The standardized deviations of values from empirical samples from
mean values obtained for null-model provide so-called Z-scores (see Appendix A). Z-scores higher
than |Z|> 2 (deviation more than two standard deviations) are taken to be statistically significant.

4.1. Finding Key Concepts from Relational Structure

Figure 2 shows the different structural roles of nodes for the augmented network (AUG) as they
are revealed by the variables D and G. The network for G shows only those nodes which have G > 0.5
with β = 1. In Figure 2, the size of the node corresponds to the value of variables D and G, thus the key
concepts are discernible as larger than average nodes in each case. The 25 highest ranking concepts
and conceptual elements that have the highest values of G are listed in Table 2 for β = 1. The rankings
according to D are also provided. For comparison, the rankings for collated networks COL-O and
COL-A are also given. The additional information in Table 2 summarizes the number N of networks,
where the given concept appears among the 10, 20, or 30 highest-ranking concepts.
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Table 1. Listing of the most important nodes and their contents. Numbering as in Figures.
Abbreviations are used for: principle (p), empirical (e) and theoretical (t).

Node Description Node Description

2 Electric charge Q 70 Magnetic interaction M = m × B
9 Superposition of forces (p) 71 Magnetic flux density (e)

14 Electric flux density D (in vacuum) 72 Electric current I
22 Electric field E as conservative field 74 Örsted’s experiment
27 Superposition of fields (p) 76 Biot-Savart law (e)
28 Electric field E defined as E = F/q 82 Ampere-Laplace law (integral form)
32 Mechanical work in E-field 83 Magnetic force F = qv × B
33 Work and conservation of energy (p) 85 B as non-conservative field
34 Energy conservation (p) 86 Magnetic potential energy
38 Electric potential (as grad E) 87 Magnetic field (defined through 86)
41 Equipotential surfaces 90 Ampere’s circuital law
44 Electric field defined through potential 91 Magnetic field H (defined through 90)
47 Electric flux 93 Lorentz’s force F = q(E + v × B)
51 Gauss’ law defining D 95 Electromagnetic induction (experiment)
54 Electric field defined as source field 98 Lenz’s law
55 Ferromagnet (bar magnet) 100 Induction law (Faraday-Henry law)
57 Magnetic interaction (through force) 103 Electromotive force (emf)
59 Magnetic dipole (as theoretical model) 109 Rotational electric field (e)
62 Magnetic interaction as action-at-dist. 113 Ampere-Maxwell law
63 Magnetic moment m (e) 116 Resonance frequency (in RCL circuit)
66 Magnetic flux density B (t) 117 Resonance (RCL) circuit (experiment)
69 Magnetic flux φ 120 Electromagnetic (propagating) waves

The Z-scores provided in Table 2 for G-values in AUG-network show that some concepts, like
57 and 70, have exceptionally high Z-scores. This indicates a substantially higher number of long
contiguous paths than expected on the basis of local connectivity D. These concepts have exceptionally
high global influence on the structure. Some other concepts, such as 2, 28, and 100 have exceptionally
low Z-scores, which indicates that they are more important locally than globally, and do not affect the
conceptual system on a global scale as much as expected on the basis of their local importance.
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Table 2. Communicability-based rankings for collated (COL) and augmented (AUG) networks.
The symbol R refers to ranking. Corresponding Z-scores are provided. DEG refers to Degree centrality
D-based rankings and N refers to frequency in the sample of 12 networks. For collated networks, results
are for optimized (opt) and authentic (aut). The last six columns list the frequency of key concepts in
individual (IND) networks, either optimized (opt) or with β = 1 when n = 10 (n10), 20 (n20), or 30 (n30)
highest ranking concepts are included.

AUG COL IND opt IND (β = 1)

Node β = 1 All Z DEG Opt
β = 1

aut
β = 1

opt
All n10 n20 n30 n10 n20 n30

R N R R R N N N N N N N

57 1 10 +6.8 20 1 1 10 4 4 7
2 2 10 −5.0 2 10 12 5 4 7 11 5 7 9

66 3 10 9 8 2 10 4 6 8 4 7 7
91 4 10 10 2 3 10 5 6 8 5 7 8
83 5 10 −2.1 1 3 5 10 5 8 10 3 9 11
71 6 10 +2.6 5 5 4 10 4 8 10 3 9 9

100 7 10 −2.5 4 6 8 10 6 8 9 6 7 7
55 8 8 +3.3 9 9 1 3 3 1 2 3
27 9 10 7 2 3 4 3 4 4

113 10 10 11 15 15 10 4 7 11 5 8 11
109 11 10 8 11 7 10 7 9 11 8 10 11
63 12 10 +2.4 13 4 6 10 5 8 9 4 6 8
33 13 10 6 8 2 3 5 1 3 4
85 14 7 +4.4 12 10 6 1 1 3 1 1 4
93 15 10 19 1 5 6 4 6 6
28 16 6 −4.0 3 14 13 5 7 11 12 8 11 12
82 17 9 +2.8 7 11 10 2 3 3 1 2 4

120 18 6 +2.9 22 6 4 6 3 6 7
117 19 6 23 14 6 1 6 6 3 5 7
116 17 6 +2.1 6 2 2 1 1 3
103 19 8 25 1 2 3 1 1 3
72 20 9 21 18 17 10 2 4 4 2 4 4
70 21 7 +5.8 19 22 8 2 2 2 2 2
59 22 7 16 23 8 1 1 3 1 1 1
74 23 10 23 13 21 10 2 6 7 3 5
62 24 7 +4.6 20 8 2 1 2
22 25 7 22 25 8 1 2 1 2

Table 3 summarizes the 16 top-ranking nodes based on values of C, which thus represent concepts
with high local cohesion. The rankings in Tables 2 and 3 allow the following preliminary conclusions:

1. Nodes which rank high in D are also often high-ranking in G, but clear differences emerge.
2. Nodes which rank high in D and G are different from nodes which rank high in C.

Table 3. Ranking based on local clustering C for augmented network. Maximum value C = 1.00
indicates totally transitive (triadic) connectivity. Note that many are connected concepts in Table 2.

Concept C Concept C

107. Definition of mutual inductance 1.00 39. Experiment of electric potential 0.90
89. Derivation of Ampere circ. law 1.00 13. Model of interaction through E 0.87
4. Experiment of Millikan’s oil drop 1.00 29. Model of electric state 0.83
52. Model of E-field, specific 1.00 118. Model of RCL-circuit 0.79
50. Derivation of Gauss’s law 1.00 119. Experiment of RCL-circuit, receiver 0.73
48. Definition of Electric flux density 1.00 80. Experiment of force on wire F = ILb 0.70
37. Derivation of Potential 1.00 115. Definition of alternating current 0.67
81. Model of current element 1.00 114. Experiment of coil in magnetic field 0.67
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These observations are readily interpreted so that the structural positions of nodes are indeed
different, and distinct sets of nodes can be formed on the basis of how they contribute to the connectivity
of the network locally (D and C) and globally (G). Many nodes with high values of D are those that
provide high local connectivity and are thus also important in initializing the contiguous patchwork
within the network. The local connectivity as operationalized through D thus correlates strongly with
contiguous global connectivity. The Spearman rank correlation coefficient between D and G is 0.87,
while the correlation of C with D is in the range of 0.16-0.17. Therefore, a high value of D is a good
predictor of a high value of global connectivity as measured by G, but does not determine it completely.
Comparison of values of D and G and relative rankings based on these values for a given node and
provide information on the global role of the node; nodes with higher values of G than expected on the
basis of D are clearly globally the most important ones.

To test the effect of parameter choices on rankings, we performed the analysis for values in the
range of 1/32 < β < 32. The sets of key concepts were found for all 20 cases tested and were classified
according to the value of compound parameter β. The results are shown in Figure 3 in the form of
a fingerprint-map (a kind of heat-map) for all 121 concepts. In the fingerprint-map, concepts which
have high communicability are shown as dark stripes. As can be seen, up to value log β ≈ −0.1
of the resolution is poor because too many low communicability nodes (concepts) contribute to
communicability. The change in resolution changes rapidly when value log β ≈ 0 is approached and
improves slightly up to log β ≈ 1.2. The optimal scale to explore the network with robust results is thus
−0.1 < β < 1.2. Although the detailed values of the communicability vary in region 0.1 < β < 1.2,
variations are moderate, and the sets of the highest-ranking concepts remain very stable (among the
25 highest-ranking concepts around 90% are always the same). We now take the set of 35 concepts,
which are found in all combinations among the 25 highest-ranking concepts. The Communicability
centrality G cases of log β = 0, 0.6, and 1.1 are shown in Figure 4 in the form of radar-plots. For
comparison, the Degree centrality D is also shown (note that D does not depend on β because it is a
local measure).
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The radar-plots show the 35 concepts which rank highly according to their value of G in the
networks for a wide range of parameters β. The radar plots for G show that the augmented network
(AUG) has a very robust set of key concepts, not much affected by the parameter choices. Some
concepts which rank highly in providing local connectivity D (e.g., nodes 2, 71, 83, and 100) also rank
highly in providing global connectivity G. However, some concepts which rank highly in providing
global connectivity (e.g., nodes 57, 59, 116, and 117) do not rank highly in providing local connectivity.
In AUG, it is remarkable that the distribution of high-ranking nodes is rather uniform. In particular,
when it is noted that module of electricity corresponds to nodes 1–54, that of magnetism to nodes
55–93, and 94–121 for electromagnetism, the distribution signals equal importance for each module.
Of course, this is as expected, because AUG was augmented because of expert evaluation of the
student-produced networks; the experts added links they deemed to be of importance but missing
from student expressions. Although the AUG is not a genuine expert-made network, it acts here as
a benchmark.

The key concepts in collated networks (COL-O and COL-A) are based on genuine student
networks. In both cases, it is striking that the module of nodes 55–94 corresponding to magnetism is
overrepresented in comparison to the module of electricity (nodes 1–54). Similar overemphasis on
magnetism was observed in a closely related study [17] but with a set of concepts of more limited
scope. Otherwise, the collated networks are very close to augmented network, which indicates that
the structures of AUG and COL support the relational connection between key concepts similarly;
as far as structure of conceptual knowledge is in focus, expert augmented, and students’ group-level
knowledge come close to each other.

The comparison of COL-O to COL-A provides an interesting notion: namely, the results for
key concepts are nearly indistinguishable. The differences for key concepts in COL-A and COL-O
are significantly smaller. This indicates that interrater agreement in classification of nodes is not
perhaps crucial, at least on the level of agreement obtained, for the relevance of the structural analysis.
The results of insensitivity to different results of classification at the level of single nodes is masked
by the importance of structure, which is in any case not captured by interrater agreement reliability
assessment. The situation in which traditional statistical tests designed for local quantities fail to be of
relevance in networked systems is not uncommon, and guides attention to thinking critically about
the uses of traditional measures of reliability in concept-network analysis (cf. ref. [41]).

4.2. Content of Key Concepts

The structural network-based analysis picks out concept-nodes according to their role in local
and global connectivity. The analysis, as such, does not refer in any way to the content of nodes, nor
does it use any information about the content of a node in assessing its structural importance. Next,
we turn to the question concerning the content of the key concepts.

The local connectivity, as operationalized by degree D, picks out certain nodes with high values
of D, as shown in Figure 2 (upper row, left) and summarized in Table 2. In the expert network, the
concept-nodes’ magnetic force (node 83) and electric charge (node 2) have the highest rankings. These
concepts are central to the electrostatic and magnetostatic clusters of concepts. Node 2 (electric charge)
has high connectivity because it is the central starting concept in the substantiation of many other
concepts; node 83 (magnetic force) is used in many different models and experiments to interpret them,
and thus connects with magnetostatics as well as electromagnetism. Magnetic force is F = qv× B,
understood as part of Lorentz’s force. Some other concepts with high values of D are field concepts,
either related to electric fields (nodes 28, 109) or to magnetic fields (nodes 91, 71, and 66). Node
28 is electric field empirically defined as E = F/q through electrostatic force and understood as the
space-filling field describing the electrostatic interaction. Node 91 is magnetic field H and is defined
by the Ampere-Laplace law and Ampere’s circuital law, which relates the field H to electric current.
Magnetic flux density B, as it appears in node 71, is related to the empirical definition of strength of
magnetic interaction, through torque M and magnetic moment m and relation M = m× B. The flux
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density B (node 66) interprets this in terms of magnetic fields in vacuum as created by current-carrying
wires, through the Biot-Savart experimental law.

The high-ranking nodes related to electromagnetic induction are 100 (Faraday-Henry empirical
induction law) and 109 (rotational electric field). Field concept 109 is also among the top 15 concepts.
It is satisfying to find that the induction law is so prominently featured in the students’ group-level
(COL-A) knowledge base. In addition, another relatively well-substantiated node is 113, which is the
Ampere-Maxwell law for rotational field. From the viewpoint of content (of university level physics),
it is of course satisfactory that all nodes with high values are also central to the topics of electricity and
magnetism; such concepts are thus key concepts structurally and in terms of content. Interestingly,
magnetic force has the topmost ranking for local connectivity, indicating that it plays a key role for
many other concepts, at least locally. In addition to field concepts, theoretical general principles,
such as superposition of fields (node 27) and the principle of energy conservation in the context of
mechanical work (node 33), have relatively high local connectivity.

The global contiguity of the node, as operationalized by communicability centrality G is,
as expected, correlated with values of D; if a node has a high value of D it often also has a high
value of G, which indicates that the node is connected to many other nodes through contiguous paths.
The concepts with the highest G values are related to magnetic fields (nodes 57, 71, 91, and 66), magnetic
interaction (nodes 63 and 83), and to electromagnetic induction (nodes 100 and 109) and waves (nodes
116, 117, and 120). Nodes 57, 63, 116, 177, and 120 are interesting, because they do not have as high of
a local connectivity as might be expected on the basis of their global connectivity. In turn, node 28 has
substantially lower global connectivity than expected on the basis of its local connectivity.

The higher than expected global connectivity of the above-mentioned nodes is also reflected in
their Z-scores, which are high. Similarly, node 28 has a very low Z-score. Node 57 is a conceptual
element related to the empirical definition of the magnetic field, through quantitative experiments
and measurement of force and torque. Node 28 has a similar epistemic role regarding electric fields
and represents definitions of field strength through force. However, their global structural positions
are very different. While node 57 supports many other concepts in modules of magnetism concepts,
node 28 does not have an equally important role for concepts in the electricity concepts module. Also,
nodes 113, 116, and 120, which are all related to the conceptualization of propagating electric fields,
culminating in the introduction of propagating electric fields as node 120, are highly globally connected.
This reflects the fact that they are linked with both electricity and magnetism modules through electric
field and magnetic field concepts.

Interestingly, among the top-ranking nodes are rotational electric fields (node 109) and
Ampere’s and Maxwell’s law (node 113), which are rather high-level theoretical concepts related
to electromagnetic induction phenomena and induction law (node 100). Interestingly, the rotational
magnetic field as a non-conservative field (node 85) has rank 3, although it does not appear among
the 25 highest ranking nodes in D. Apparently, in students’ knowledge, node 85 plays a key role in
connecting magnetostatics to the clusters of electrostatics and electrodynamics. The global importance
of magnetostatics and electromagnetic induction is of course to be expected, because many of its
concepts mediate between electrostatics and electrodynamics. For students, magnetostatics seems
also to be of special interest, which was noted in a previous study focusing on learning concepts of
electrostatics and magnetostatics [13].

The 35 nodes featured in the AUG network are all unquestionably central to the content, and
several theoretically important and relatively abstract key concepts are found in this list. Many of
these concepts are field concepts. Collated networks COL-O and COL-A do not feature all of these
concepts as strongly as in the AUG network, but many of them are still among the key concepts of the
collated networks. The COL networks are biased toward magnetism concepts, and for their part agree
closely with the AUG network.

Some very central theoretical laws are included among the key concepts. The conclusion is that
high values of D and G indicate that a concept is central from the viewpoint of theoretical, abstract
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content. Within that set of concepts, the concepts with high values of G are often related to magnetism
and magnetic fields, thus revealing their role in providing global connectivity within the system of
concepts and conceptual elements. Such global connections, consisting of the contiguous paths, form a
skeletal patchwork that extends throughout the network and provide global cohesion and reachability
of concepts otherwise distant.

The local cohesion (transitive) as measured by clustering C picks out concepts and conceptual
elements which are very different from high D and G conceptual elements. The top conceptual elements
with high C values reported in Table 3 are mostly model-based derivations of certain laws, models,
experiments, or definitions. For example, in the expert network, some of the top-ranking nodes are:
107 (definition of mutual inductance); 89 (derivation of Ampere’s circuital law by using a specific
model of linear wire and cylindrical magnetic field); 4 (Millikan’s oil drop experiment); 52 (example
of using homogeneous electric field); and 50 (derivation of Gauss’s law through model of spherical
conductor). The other top ranking high-C concepts and conceptual elements are similar. For expert
and novice networks, the 16 highest-ranking concepts according to their C values contain 12 which are
derivations, models, model-based definitions, or experiments. Moreover, these items, and the ways
they are reported in students’ reports, closely match textbook presentations, some specific models
offered in textbooks, and the problems discussed in them (compare with ref [43,44]).

In summary, the network analysis supports the view that globally important concepts are joined
together by long contiguous paths, and thus play a role in connecting distant parts of the network.
These concepts are primarily abstract, general concepts, in the case of electricity and magnetism very
often general field concepts. The concepts, which are tightly and transitively (triadically) connected and
which form tight and closely connected clusters, are nearly never the concepts with long contiguous
paths. Such concepts are locally important, situational, and appear in the context of specific models,
experiments, and examples related to them. Therefore, the abstract and situational concepts indeed
have different and recognizable structural positions in students’ representations of their knowledge.

4.3. Similarity Comparisons

The collated networks (COL-O and COL-A) contain 697 substantiated connections against
787 connections in the augmented network (AUG), while the number of connections in the individual
networks on which the collated networks are based is lowest at 64 and highest at 129. The variation
between networks is thus considerable. The communicability centrality of nodes with G > 0.5 in all
12 student networks are shown in Figure 5. The student networks share many high-ranking concepts
with the expert network, but in them one finds also many such nodes which are not featured in collated
networks among the high-ranking nodes. There is thus overlap between the networks, but not a perfect
match. A more detailed breakdown of the key concepts is revealed by radar-maps of Communicability
centrality G in Figure 6, to be compared with radar-maps in Figure 3. As may be seen, with increased
demand for quality of substantiation, by increasing value of β, very few nodes remain as high-ranking
nodes. Only networks g4 and g5 remain relatively robust and retain their set of key concepts when β

is increased.
The key concepts with high D- and G-rankings in novice networks are not as systematic a

collection of concepts as found in the expert network, and many individual networks miss the abstract
field concepts as high-ranking ones. On the other hand, nearly all top-ranking concepts and conceptual
elements in individual networks are relevant to the topic. The comparison shows that although the
12 individual student networks contain the set of highly abstract and central concepts, they are not
often adequately substantiated in individual concept networks. The individual networks thus contain
the knowledge which is contained in collated networks but in a very fragmented way; high-ranking
concepts with well substantiated connections are different in various individual networks, although at
the group-level the collection and collated structure formed out of them are very satisfactory



www.manaraa.com

Educ. Sci. 2019, 9, 18 15 of 25
Educ. Sci. 2019, 8, x FOR PEER REVIEW  15 of 26 

 

Figure 5. Communicability centrality G in individual (IND) networks g1-g12. The size of the node is 
proportional to the value of G. 

The key concepts with high D- and G-rankings in novice networks are not as systematic a collection 
of concepts as found in the expert network, and many individual networks miss the abstract field 
concepts as high-ranking ones. On the other hand, nearly all top-ranking concepts and conceptual 
elements in individual networks are relevant to the topic. The comparison shows that although the 
12 individual student networks contain the set of highly abstract and central concepts, they are not 
often adequately substantiated in individual concept networks. The individual networks thus contain 
the knowledge which is contained in collated networks but in a very fragmented way; high-ranking 
concepts with well substantiated connections are different in various individual networks, although 
at the group-level the collection and collated structure formed out of them are very satisfactory 

Figure 5. Communicability centrality G in individual (IND) networks g1-g12. The size of the node is
proportional to the value of G.

The novice network reveals a similar bias towards highly cohesive, locally triadically, and
transitively connected cliques with high values of C. These are again conceptual elements towards
derivations, models, model-based definitions, and experiments (see Table 3). In novice networks,
however, the high-C conceptual elements are different from the elements found in the expert network;
only their type is similar. The diversity of high-C nodes is thus very high, contrary to collection of
nodes with high values of D and G, in which case the novice networks share many nodes with the
expert network. The substantial low overlap of high-C nodes in novice and expert networks reveals
that individual student concept networks, on which the novice network is based, have very few
highly cohesive clusters in common, but such clusters are nearly always of a similar type: model-based
derivations, model-based definitions, models, or experiments as found in textbooks. On the other hand,
the diversity of high-C nodes reflects the facts that high-C nodes are auxiliary, in the role of supporting
(e.g., through derivation, definition, or modeling) the substantiation of highly abstract field concepts,
which have globally more important structural and content-related roles. This interpretation of results
concerning the high-C nodes is in concordance with the notion that tight clustering of concepts may
be characteristics of shallow knowledge related to the specific context, instead of being abstract and
general [19]. Here, however, the nodes with high values of C do not represent shallow but auxiliary
and very context-specific knowledge.

We base the similarity comparisons on the distribution of communicability centrality values;
the more similar the distribution, the more similar are the networks. Such comparison is most
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easily done on the basis of so-called cosine-similarity S(g,g’) for networks g and g’ [24,40], which is
defined in detail in Appendix A in terms of communicability of nodes contained in the networks.
Similarity S is normalized and attains values from 0 (complete dissimilarity) to 1 (complete similarity).
The cosine-similarity S is a convenient way to compress the information and perform a similarity
comparison by using only one number. This is of course a highly average view and a lot of information
is lost. Nevertheless, it provides a comprehensive overall picture of how networks are related when
attention is focused on key concepts (high communicability concepts). The cosine-similarity is shown in
Figure 7 for Communicability centrality G, for all pairs of comparison: AUG vs. AUG, AUG vs. COL-O
and COL-A, COL-O vs. COL-A, and for IND vs. COL-A and IND vs. IND. For (12 × 11)/2 pairs, IND
vs. IND comparison only data points are shown along with the average values.Educ. Sci. 2019, 8, x FOR PEER REVIEW  16 of 26 
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Figure 6. Radar-plots for key concepts (based on values of G) in 12 individual networks. The values of
G are shown for cases of Log β = 0, 0.6, and 1.1 (from outmost to the innermost curves).

The similarity comparison shows that collated networks are rather similar; at the local level the
corresponding log β < −0.5 is nearly completely similar (i.e., they have the same sets of key concepts).
Even with increased scale of exploration when long global paths are included, similarity remains
high, ranging from about 0.98 for COL-O vs. COL-A to 0.82 for AUG vs. COL-A. The similarities of
individual networks are also substantially high at the local level for log β < −0.5, on average being
0.75. When similarity on more global scales is explored by increasing the value of β, and when longer
paths become involved, the similarities of individual networks between other individual networks
drop drastically, as well as their similarity to the collated, authentic COL-A network. On the average,
they saturate to similarity 0.3. This suggests that in individual networks, successfully substantiated
links are all alike, while every unsuccessful link is unsuccessful in its own way. By collecting and
collating the successful links, however, a highly satisfactory group-level conceptual structure emerges.
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Consequently, the results suggest that pre-service teacher student’s knowledge is piecewise and
partial from the viewpoint of the global connectivity required from expert-like knowledge, yet it has
many expert-like parts. If such shared knowledge is supposed to be the basis of mutual communication
and sharing of knowledge, it may be too low a similarity for effective discussion, but on the other
hand, it provides a lot of unused potential to learn through sharing that unshared knowledge.

5. Discussion and Conclusions

Cognitively-oriented research on learning has pointed out that relational knowledge and relational
interlinked dependencies between concepts are crucial in learning conceptual knowledge and the
meaning of concepts, especially in the case of abstract concepts. The relational view of knowledge lends
it easily to an approach in which students’ conceptual knowledge (or conceptual knowledge in general)
is considered as a networked relational system. Informed by such notions, we have here investigated
pre-service teachers’ declarative knowledge of physics concepts (in electricity and magnetism) to
find out if structural position of a concepts within a networked system of concepts is indicative of its
abstractness or context dependence. We focus here on the knowledge that students can express by
drawing concept networks and by writing explanations on what those drawn networks contain and
describe. Such knowledge is declarative conceptual knowledge, and because it is expressed through
terms and names of concepts and conceptual structures (like models), it can be analyzed as a lexicon
of scientific knowledge, in which connections between concepts derive from how they can be used
together with other concepts.

The purpose of the study is to show how the interlinked connections of nodes, locally and globally,
can be used in analysis of such a network, and in revealing how different elements of the network are
supported through their weighted connection to other nodes in the network. The methods of analyzing
such networks introduced here augment the traditional methods, which most often focus either on
local properties through counting links [8,11,45] or on qualitative global relational properties by visual
inspection [46,47]. The concept networks analyzed here represent pre-service teacher students’ (N = 12)
understanding of physics concepts and their interrelationships as a collated network, consisting of
121 nodes and 787 links in its most extensive form when all links are included (augmented network),
or only 602 links when substantiated links are considered (novice network). In addition, a third
network was formed on the basis of the augmented network by having experts add links that they
felt were missing (expert network). All three networks were analyzed by operationalizing the notions
of local connectivity (degree centrality D), global connectivity (communicability centrality G), and
local cohesion (local clustering coefficient C). We can now provide answers to the first two of our three
research questions as follows.
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Research question 1 asked “Which concepts and conceptual elements have high connectivity,
and of which type?” The results of the analysis show that the set of concepts which have high global
connectivity and coherence (high values of G) are predominantly theoretical and abstract concepts,
many of them field-concepts. These concepts form the theoretical skeletal conceptual frame of the
network. Some of the concepts in that group play a key role in connecting different, well-connected
clusters of concepts. All concepts and conceptual elements that have high values of D and G are also
central from the point of view of content. This finding is of course satisfying and not trivially expected
to be featured in students’ representations of their knowledge.

Research question 2 asked “How do the concepts with high connectivity of various types differ in
their content?” The results show that another set of concepts is the set with high local cohesion in form
of transitive (triadic) connectivity, as measured by local clustering coefficient C. These concepts and
conceptual elements are specific derived models or specific examples, or auxiliary concepts connected
with them. They are not nodes in the network having high local coherence, but they have a key
role in supporting or augmenting the theoretical skeletal structure formed by the abstract theoretical
concepts with high global connectivity and coherence. To our knowledge, no previous studies have
demonstrated similar results as conclusively, based on detailed network analysis as presented here.

The notions that concepts and conceptual elements with high global connectivity and which are
predominantly theoretical and abstract parallels, with notions that concepts of abstract knowledge
are not closely connected, and that such connections in the case of expert’s knowledge may be
parsimonious [19]. This opens an interpretation that the tendency that high-G concept-nodes have
lower global connectivity than expected on the basis of their local connectivity may be a feature of
expert-like knowledge instead an indication of difficulty to create such connections. On the other hand,
it has been suggested that novice’s shallow knowledge is only locally connected and lacks connections
that are contiguous and indirect [19]. In the present case, such conceptual knowledge is recognized as
concept-nodes, which have relatively high values of local clustering (C) and high Z-scores, but low
values of global connectivity (G).

We have not analyzed individual student networks in detail but have only compared the similarity
between the collated novice network and the augmented and expert networks on the basis of the
distribution of the values of local connectivity D, global connectivity G, and local cohesion C of their
nodes. Similarity between the networks is taken to be higher when the similarity of rankings of the
nodes based on the values of D, G, and C is greater. This analysis allows us to answer the third and
last research question.

Research question 3 asked “How does individual students’ knowledge relate to group-level
knowledge?” The results show that the augmented network (i.e., expert network) is nearly identical
to the collated network (student knowledge at group-level), but the novice network has only about
40% similarity with the augmented network. An additional comparison between the 12 individual
networks, each made by one student, shows that the mutual similarity of individual networks is also
roughly 40%. The conclusion is that, on average, individual student-made networks share a substantial
number of the highest-ranking nodes, and the best substantiation of nodes as collected in the collated
networks comes from only a few networks. This indicates that high-quality conceptual knowledge,
as collected in the novice network, is distributed sparsely and frugally within the group of 12 students.
On the other hand, when demands on substantiation of the knowledge are relaxed and recognition on
the level of identification of a connection is sufficient, the collated network (augmented network) is a
highly satisfactory collection of potentially valid connections. This means that students’ knowledge is
dispersed, and as such not necessarily easily retrieved or consolidated collectively. If the dispersed
knowledge could be consolidated through collaborative knowledge elaboration, that would provide
an immensely effective instructional approach. It remains a challenge to instruction and teaching to
find ways to make this distributed knowledge available to all students in the group.

This study, although it reveals many important relations between structural position of concepts
and their abstractness, has its limitations. The most obvious limitation, of course, is that we restrict
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attention on declarative conceptual knowledge. However, declarative conceptual knowledge is
indispensable in problem solving and in acquiring procedural knowledge. Also, it is the most obvious
type of knowledge to pay attention in communication. In this respect, the limitation to declarative
knowledge is shared with many other studies in learning and science education. Regarding the method,
the assumption that connectivity is the property of most interest is the most crucial one. The motivation
to focus on connectivity is based on its role in the relational view of concepts as well as analyses of
structure of scientific knowledge. Connectivity, however, as a term related to networks science, is not
self-explanatory and has different interpretations [48]. Our data is only a time slice of a more complex,
dynamic knowledge acquisition and processing situation, and thus we are restricted to exploring the
connectivity at a static level. In that limited sense, the way in which we discuss connectivity agrees
with how it is understood within network science. It should also be noted that we have deliberately
avoided using coherence and hierarchy as a key notion characterising the structure of knowledge.
The reason is that coherence is a notion which is too elusive to be operationalized, while hierarchy
can be operationalized but then requires very reliable information of the directness of connections.
Directedness, however, in cases where students represent their knowledge, would be too awkward
because we have little understanding of what students represent when they represent directions in
their concept networks.

Finally, it is necessary to discuss how the analysis of structure of knowledge relates to other
dimensions of learning. One of the main notions contained in cognitively- and psychologically-oriented
research is the key role of the structure of a teacher’s knowledge in instruction; experts are more efficient
in facilitating higher-level learning than novices because they have better mastery and organization
of target knowledge than novices [19,22,49,50]. However, a study focusing on problem-solving has
demonstrated that use of conceptual knowledge is strongly situational. Interestingly, in studies
concerning problem-solving in electricity and magnetism [12,15], some concepts classified as typical
for low-level knowledge are in our study found to be key concepts with high global connectivity.
Nevertheless, in both cases the field concepts are classified as high-level concepts. The difference
between the results of research focusing on situational problem-solving and concepts as part of a
system of knowledge (as in the present study) may simply be due to the different focus on different
dimensions of learning. Conceptual learning involves learning to use concepts in specific problems,
and in addition, analyzing the norms and relations regarding how concepts are connected as part of a
system. The latter ability, though needed in problem-solving, may not be fully visible in addressing
closed and traditional problems, but may become visible when dealing with open and more complex
problems. Network methods as introduced here are suitable tools to track the large-scale structure of
students’ declarative knowledge and for cartography of conceptual semantic fields, revealing how
students conceive and rationalize the relational connections between concepts. In future, these kinds of
methods need to be connected to research which explores the ways the concepts are used in different
contexts, situations, and problem solving, where in addition, procedural or strategic knowledge
is needed.

In summary, we have shown how pre-service teacher students’ declarative conceptual knowledge
builds on relational connections between concepts, and how the local cohesion and global
connectedness of students’ knowledge builds up through relational connections. The analysis shows
that, with increasing comprehensiveness and richness, abstract advanced concepts are recognized
through their high global connectivity and the contiguity of paths through which they are connected
to other concepts. The locally cohesive concepts, on the other hand, are auxiliary supporting concepts,
specific textbook-type experiments, and model-type conceptional elements. We see three advantages
to the type of approach to science education research presented here: explicated views of learning
provided by relational structure of knowledge [19–22,25–28]; rationalization informed by analysis
of knowledge as a system coming from philosophical analyses of scientific knowledge [29–31]; and
conceptualization and operationalization of central quantities used in analysis based on a network
view of knowledge [36–38], which is in concordance with the view on learning and conception of
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knowledge that forms the basis of the study. The results help to better define the notion of structure of
pre-service teacher students’ relational knowledge, its cohesiveness, connectedness, and contiguity,
to point out how to make such properties of knowledge visible and approachable in research, and to
recognize their role in teaching and instruction.
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Appendix A. Mathematical Models of Analysis

In the epistemic analysis, the epistemic strength s(v) of node v is a measure of how strongly it is
substantiated. If the given node v has intrinsic epistemic strength s(v) and it is connected to a set of
other nodes, we can operationalize the effective epistemic strength by assigning to each link connecting
nodes v and u a weight a, which derives its strength from the node it originates from: a(v→u) = s(u).
The epistemic strengths of the nodes are thus transformed to link weights a(v→u). The weights are
elements of adjacency matrix a, which then contains all information of connections between nodes
and their epistemic weights, which makes the network amenable to flexible analysis as a weighted,
directed network. Analysis of connectivity of nodes in the network is based on the weighted network.

A1. The Centralities

The analysis method introduced here is based on finding the nodes that are important in the
network, locally and globally. Each node in the network represents a knowledge element, and thus
links between the nodes directly represent the relations between knowledge elements. The analysis
of the relational structure and coherence of the network requires that the relevant information of the
connections yield to quantitative analysis. In Section 3 we introduced the operationalization of desired
types of local and global connectivity in form: (1) local connectivity; (2) local cohesion; and (3) global
connectivity. In what follows, we introduce mathematical formulae to calculate them by counting
connections and paths. All quantities are defined in terms of adjacency matrix. The adjacency matrix a
has elements aij = [a]ij, which is the epistemic weight of the link when nodes i and j are connected or is
otherwise zero.

1. Degree centrality D as measure to local connectivity. Those nodes which have high local
importance have many connections so that they are adjacent to many nodes in a network. This kind of
centrality is simply measured through the total number of links attached to the given node, thus called
the Degree Centrality D of the node. The degree centrality D [35,36] is simply the weighted number of
links (out- and ingoing) Dv attached to a given node v

Dv = ∑i(aiv + avi) (A1)

Degree centrality for a weighted network as defined here is sometimes called strength. It is
an efficient and simple measure to gauge local connectivity, but it only provides information on
connections to adjacent nodes, i.e., to the nearest neighbours.

2. Local clustering coefficient C as a measure for local cohesion. Local clustering C, which
measures the nodes adjacent to a given node v, with these nodes being connected as fully connected
triads, is defined as [39,40]

Cv =

[
a3]

vv
Dv(Dv − 1)

(A2)

The ratio represents the number of fully connected triples (triads) divided by number of triples
connected by two links only (elementary spokes). A transitive connection, in which the connection
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between A and C, and B and C, often also indicates a connection between A and B, leads to high
clustering [39,40].

3. Communicability centrality G. This centrality operationalizes the global connectivity by
counting all paths (or walks) between nodes. The weighted matrix can be used directly to obtain the
number of walks. This is based on the notion that there is a walk from p to q if apq 6= 0, walk p→j→q
if apj, ajq 6= 0, walk p→k→k’→q if apj, ajk, akq 6= 0, etc. On the other hand, for a walk involving two
nodes a2 6= 0, for three nodes a3 6= 0, respectively. Now, in a connected network, the number of long
walks increases rapidly, nearly factorially with the length of the walk, because different combinatorial
possibilities emerge, and one is interested in the relative weight of such walks. Therefore, the number
of walks is usually divided by the factorial, to obtain [18,40]

Gpq = 1 +
[a]pq

1!
+

[
a2]

pq

2!
+

[
a3]

pq

3!
+ . . . = [ea]pq (A3)

The Communicability centrality of node v is then obtained as

Gv =
∑k(Gvk + Gkv)

∑v,k(Gvk + Gkv)
(A4)

where Gvv′ = [Exp[βa]]vv′ . From the definition in Equation A4 it can be seen that the Communicability
centrality is a totally holistic measure of network metrics. The communicability G, which will be used
to explore the contiguous connectivity of the networks and the role of specific nodes (key concepts)
in providing the connectivity, uses parameter β to tune the length of paths to be included as part
of exploration of the network. Parameter β << 1 makes the exploration strictly local, while β >> 1
explores the entire network, granting all path-lengths nearly equal importance. Parameter value
β = 1 corresponds to the case where paths including L links are weighted by factorial L! of the links.
Although the number of alternative paths between two distant nodes does not always grow in a
strictly multiplicative manner, in practice factorial provides a reasonable and robust normalization [40].
The Communicability centrality G, which quantifies the property of contiguous connectivity, is thus the
most important of the operationalized measures, because with it, by increasing the values of β, we can
explore the effect of long contiguous paths on the communicability between nodes. The centrality
measures used in analysis are summarized in Table A1 with their mathematical definitions.

Table A1. The variables measuring local and global coherence and their meaning. The adjacency matrix
a has elements aij which is the epistemic weight of the link when nodes i and j are connected or is
otherwise zero.

Observable Operationalized Property Mathematical
Definition

D Degree centrality Local connectivity in terms of number links
attached to a node. Dv = ∑i(aiv + avi)

C Clustering coefficient Local cohesion as relative number of triadic
transitive connections of the node. Cv =

[a3]vv
Dv(Dv−1)

G Communicability centrality
Global contiguity as number of paths of a

node to all other nodes to which it is
Gv = ∑k(Gvk+Gkv)

∑v,k(Gvk+Gkv)

contiguously connected. Gvv′ = [Exp[βa]]vv′

A2. Reliability Analysis

An important part of network analysis is the analysis of the reliability and the statistical
significance of the results. This can be accomplished by comparing the results of the analysis to
results obtained from an appropriate null-model [40,51]. To decide which features and which values
of centralities are exceptional and not determined simply by the size (number of nodes and links) of
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the networks and the distribution of in- and out-going links among the nodes (in- and out-degrees
of the node), we need to define the null-model, which preserves the number of nodes and links and
the direction of links but destroys correlations contained in the linkages of different nodes in the
collated network. Such a null model is obtained by rewiring all links in the network. In rewiring, two
nodes are selected at random and their outgoing links are switched, as well as the in-coming links.
When this is repeated many times, initially present correlations in the wirings are wiped out. In this
study, we used 5000 re-wirings for each rewiring and repeated it 1000 times to obtain an ensemble of
networks to be compared with the original collated networks. All re-wirings were performed with
IGraph software [52].

The average values of variables O ∈ {C, G} was calculated for the ensemble of rewired networks,
with averages and standard deviations denoted by 〈O〉 and 〈std〉O, respectively. The statistical
significance of the different centralities and the reliability of the results can be assessed by calculating
the so-called Z-scores (i.e., standardized form) of variable O, defined as [40,51]

Z =
O− 〈O〉R
〈std〉R

(A5)

where O is the observable value in the empirical sample, with 〈O〉 the corresponding average value
in the ensemble of networks produced by the null-model and 〈std〉O the corresponding standard
deviation. Reliability and statistical significance require that Z-values are high enough: usually the
value Z = 2 is taken as a limiting case. Assuming that the variables O are normally distributed,
Z-score Z = 2 corresponds to p-value 0.02, while Z = 3.0 and Z = 3.5 correspond to p-values 0.01 and
0.002. Here, we have chosen to use Z = 2 as a cut-off for statistically significant deviations deserving
special attention.

A3. Similarity Analysis

Comparison of different networks is done on the basis of so-called cosine-similarity S(g,g’) for
networks g and g’ [24,40], which is in terms of communicability of nodes contained in the networks. If
the communicability centrality of node k is given by Gk in network g and by G’k in network g’, the
cosine-similarity of networks g and g’ is defined as

S
(

g, g′
)
=

∑k Gk G′k√
∑k G2

k

√
∑k G′2k

(A6)

The cosine-similarity S is normalized to have values from 0 to 1. The high values of G now have
more weight, while low values contribute less, and values of zero contribute nothing to the similarity.
The similarity is thus biased to be sensitive to high-G nodes.

Appendix B. Design Principles of Concept Networks

The students’ followed certain design principles when they constructed the networks analyzed
here. During the course, the students reflected on their knowledge from the point of view of teaching
these subjects in upper secondary school. Students were asked to concentrate on their discussions
and reflections on the concepts, laws, models, and experiments they thought to be important subject
knowledge for a teacher. Here, we provide a summary of the design principles, which are explained in
more detail elsewhere [16,17,23]. The design principles build on using only specific types of nodes and
links in knowledge representation but requiring proper epistemic substantiation for each node and
link. The nodes are various conceptual elements as follows:

1. Concepts: Named concepts, terms, or quantities.
2. Laws: Relations between concepts, terms, or quantities.
3. Models: Context-specific explanatory constructs.
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4. Experiments: Descriptions of experiments or demonstrations.

Of these nodes, laws are either experimental laws or law-like predictions in specific situations
(derived from a theory) or general laws, which are more fundamental principles (e.g., principles of
conservation). In explaining how different relationships were established between concepts, laws,
models, and experiments, students were asked to pay detailed attention to epistemic substantiation of
the connections. Each concept network had 121 nodes (but not all of them connected) and from about
70 to 160 links. These connections were written down in separate reports (approximately 15 pages
long) which accompanied the concept networks students drew.
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